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ABSTRACT 

 

The power system is a nonlinear, time-varying, high-dimensional system. How to carry out effective control to 

ensure its safer and more stable operation has been the subject of many scholars' research, and with the 

continuous expansion of the power system scale and randomness. With the access of stronger new energy 

sources, the challenges facing the security and stability of power systems are becoming more and more severe. 

The conventional optimal control method has certain limitations. For example, the variational method can only 

solve the optimal problem that the control quantity is not constrained. The maximal/minimum value principle 

can only solve the optimal control problem described by ordinary differential equations. Although the plan can 

solve the more general optimal control problem than that described by the ordinary differential equation, it is a 

problem of dimensionality hazard because it is a time-backward algorithm. Adaptive dynamic programming is 

the product of the integration of artificial intelligence and control technology. Its essence is to approximate the 

solution of Hamilton-Jacobi-Bellman equation by using the approximate structure of the function of the neural 

network. This method does not depend on the mathematical model of the controlled object, nor does it need to 

define the performance index accurately, and can learn online. The introduction of this method into the power 

system can provide a new idea for the non-linear optimal control of the power system. Based on the traditional 

Adaptive Dynamic Programming (ADP) algorithm, this paper proposes a data-driven nonlinear Multi-Input 

and Multi-Output (MIMO) adaptive dynamic programming algorithm, and applies this algorithm to Permanent 

Magnet Synchronous Motor (PMSM) related control. The simulation of single objective control and under-

actuated control model proves that the data-driven adaptive dynamic programming method based on least 

squares strategy iteration has strong robustness. 

Keywords : Adaptive Dynamic Programming(ADP), Data-driven, Intelligent power systems, Permanent 

Magnet Synchronous Motor (PMSM), Nonlinear systems, Multiple Input Multiple Output systems(MIMO). 

 

I. INTRODUCTION 

 

Adaptive dynamic programming (ADP) [1]-[4] is an 

effective method to solve the problem of dynamic 

programming. It is a new subject formed by the 

convergence of the development of artificial 

intelligence and control.  

 

Adaptive dynamic programming includes techniques 

such as Adaptive Critic Designs [5]-[6] and 

Reinforcement Learning [7]. Adaptive dynamic 

programming was first proposed by Werbos [8]. Its 

core idea is to use the function approximation 

structure to approximate the optimal performance 

index and control law, so that the corresponding 

dynamic programming calculation results can be 

obtained. In the selection of the approximation 
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structure of the function, Werbos uses a neural 

network to approximate the performance index, and 

another neural network guides the approximation 

control law under the result of the previous neural 

network, and has obtained good results [9]. Later, 

Bertsekas applied this structure extensively to the 

optimal control of nonlinear systems [10], so adaptive 

dynamic programming is also called Neuro Dynamic 

Programming [11]. Because the neural network can 

not only adaptively adjust its own weight, adaptively 

approach the performance index function, but also 

give the evaluation signal to the approximation of the 

optimal control, it is also called adaptive dynamic 

programming as adaptive evaluation design 

(Adaptive). Critic Designs, ACDs) [5]-[12], or 

Approximate Dynamic Programming [3]-[13]. In 1974, 

Werbos elaborated on the idea of neural network 

back-propagation algorithms and neural network-

based intelligent control in his doctoral thesis [14]. In 

1977, Werbos proposed the concepts of "Heuristic 

Dynamic Programming (HDP)" and "Dual Heuristic 

Programming (DHP)". Based on dynamic 

programming, two neural networks were proposed. 

The structure approaches the performance indicators 

and control laws to solve the problem of 

"dimensionality disaster" [8]. In 1992, Werbos 

proposed the "Action Dependent Heuristic Dynamic 

Programming (ADHDP)" and "Action Dependent 

Dual Heuristic Programming (ADDHP)" forms, 

through the development of dynamic programming 

algorithms. An adaptive dynamic programming 

algorithm using time-forward dynamic programming 

is proposed, and a method for solving complex 

numerical problems is proposed through "adaptive 

dynamic programming" [9]. Werbos' groundbreaking 

research work laid the foundation for ADP and made 

a significant contribution to the development of ADP. 

 

In 1996, Berthsekas and Tsitsiklis [15] of the 

Massachusetts Institute of Technology published a 

special book on Neural Dynamic Programming. This 

book begins with a dynamic programming approach 

and background, and describes adaptive neural 

programming using neural networks. And 

summarizing the training method of this structure, 

finally found the general convergence theorem of the 

stochastic approximation method, which can be used 

as the basis for analyzing various neural dynamic 

programming algorithms.  

 

In 1997, along with the proposed new neural network 

method, Prokhorov and Wunsch [16] proposed the 

design method and design procedure of HDP, DHP, 

GDHP, ADHDP, ADDHP based on BP neural 

network, using a neural network (evaluation network) 

estimation. The value function, another neural 

network (execution network) estimates the control 

action under the results of the previous neural 

network, while adjusting the two neural network 

weights using the least squares method. In order to 

prove that the weights of the ADP evaluation 

network and the execution network can converge 

during the iterative process, some random number 

estimations are used to conduct experiments, and the 

results all converge. Finally, the research examples of 

implementing the control of the club and the 

simulation of the landing of the aircraft with ADP are 

given, and an important contribution is made in the 

concrete realization of the ADP theory. In 2001, 

Jennie Si et al.[17]-[19] proposed a self-adaptive 

dynamic programming method for online learning 

neural networks that can be used directly without a 

mathematical model of the nonlinear system of the 

controlled object. In 2002, Murray et al. [20] proposed 

an iterative adaptive dynamic programming algorithm 

for a class of continuous-time nonlinear systems. 

Murray gave an analysis of the stability of the system 

stability and performance index function, making the 

adaptive dynamic programming online continuous. 

The implementation of time nonlinear systems has a 

theoretical basis. In 2005, Lee et al. [21] proposed a 

function approximator with local weighted averaging 

and ADP algorithm for Q-learned reinforcement 

learning. This algorithm can not only use the offline 

data to estimate the Q function, but also calculate the 

Q function online based on the relevant output data 
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of the system. Therefore, the algorithm does not need 

to use the neural network to form a model network to 

simulate the mathematical model of the controlled 

object. This is a non-model algorithm. In 2006, Padhi 

et al. [22] proposed an algorithm for adaptive dynamic 

programming using a single neural network adaptive 

evaluation (SNAC) structure. This method removes 

the execution network and uses a neural network to 

perform value functions and control actions. It is 

estimated that it has three potential advantages: a 

simpler structure, a smaller amount of calculation, 

and no approximation error. In 2007, Lweis et al. [23] 

studied the value function iteration method based on 

adaptive dynamic programming theory to solve the 

optimal control problem of discrete-time nonlinear 

systems. It is proved that the performance index 

function converges to the optimal solution satisfying 

the discrete-time HJB equation in the discrete case, 

which lays a theoretical foundation for the realization 

of adaptive dynamic programming in discrete-time 

nonlinear systems. In 2009, T. Dierks et al. [24] of the 

University of Missouri proposed a new ADP method. 

By using on-line system identification and off-line 

optimal control training, the application of ADP 

method does not need to know the dynamic 

characteristics of the non-linear system. In 2011, T. 

Dierks et al. [25] proposed an on-line optimal ADP 

control method for affine nonlinear discrete-time 

systems with unknown internal dynamics. In 2014, 

Heydari et al. [26] proposed a global optimal 

approximation dynamic programming algorithm for 

non-convex functions. The algorithm is also suitable 

for solving global optimal problems of nonlinear 

systems. In October 2015, AlphaGo [27] became the 

first computer program to defeat the Go pro on the 

19th board. Its core algorithm uses approximate 

dynamic programming [28] combined with 

reinforcement learning and the deep learning of deep 

neural networks approximates the chessboard 

situation and the design of the drop strategy. In May 

2017, Chinese chess player Ke Jie, who ranked the 

world number one in the past three years, defeated 

AlphaGo in three games. This is also the "historical 

leap" of artificial intelligence. 

 

II. Adaptive Dynamic Programming Method 

 

2.1 Basic Theory 

 

The basic idea of adaptive dynamic programming uses 

the function approximation structure to approximate 

the optimal performance index function and the 

optimal control strategy in the dynamic programming 

equation to satisfy the optimality principle. Thereby 

obtaining the optimal control and optimal 

performance index function. Werbos has achieved 

good results in solving the problem of approximate 

dynamic programming by using the idea of 

performing network and evaluating network 

functions to approximate structure and control 

strategy. Bertsekas then applied this structure to the 

optimal control of nonlinear systems, which brought 

a huge breakthrough in solving nonlinear problems. 

Figure1 shows the schematic diagram of adaptive 

dynamic programming. 

Evaluation module

Execution module Dynamical system

Agent

Reward/

Punishment

State

 

Figure 1. Schematic diagram of adaptive dynamic 

programming 

 

Adaptive dynamic programming consists of three 

parts [29]: dynamic system, execution module and 

evaluation (Critic) module. These three parts can be 

constructed using neural networks. The input and 
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output relationships of dynamic systems can be 

identified and trained through neural networks. The 

implementation of the network is based on the 

guidance of the evaluation network to approximate 

the optimal control strategy. The evaluation network 

is used to approximate the optimal. Performance 

indicator function. The combination of the evaluation 

network and the execution network is equivalent to 

an agent, and the reward/penalty generated at 

different stages after the control/execution of the 

dynamic system (or the controlled object) affects the 

evaluation function. Next, the neural network is used 

to approximate the executive function and the 

evaluation function, but the executive function is 

based on the estimation of the evaluation function, 

that is, the evaluation function must be minimized. 

The parameter updating of the evaluation function is 

based on Bellman optimality principle, which not 

only reduces the forward calculation time, but also 

responds to the dynamic changes of the unknown 

system on-line, so that it can automatically adjust 

some parameters in the network structure.   

The iterative algorithm of adaptive dynamic 

programming is as follows: 

Step 1 Initialize： 

○1 Setting Performance Indicator Function； 

○2 Set the initial state； 

○3 Given Computational Accuracy 𝜀. 

Step 2 For 𝑘 = 0,1,2, ⋯,the update control law is as 

follows: 

( )
( )

( ) ( ) ( ) arg min , 1
u k

u x k U x k u k J x k= + +             

           (1) 

Step 3 The update performance indicator function is 

as follows： 

( )
( )

( ) ( ) ( ) 

( ) ( ) ( )( )( )

min , 1

              , ,

u k

k

J x k U x k u k J x k

U x k u k J f x u x k

= + +          

 = +    

              

(2) 

Step 4 If  ( ) ( )1J x k J x k − +        ， stop 

updating. 

 

It can be seen from the algorithm of adaptive dynamic 

programming that the weight update of the execution 

network and the evaluation network must be iterated 

before it can be obtained. Evaluating the network 

term approximation performance index function plays 

an important role in guiding the implementation of 

network approximation control actions. At the same 

time, adaptive dynamic programming is not 

calculated according to the time-backward algorithm 

like dynamic programming, but is continuously 

corrected in the positive order according to the 

random initial value under the Bellman equation. 

This enables the development of online adaptive 

dynamic programming algorithms, which are 

improvements of adaptive dynamic programming 

over dynamic programming algorithms. 

 

2.2 Heuristic Dynamic Programming (HDP) method 

The basic idea of adaptive dynamic programming is to 

first realize the approximate representation of the 

performance index function through a function 

approximation tool, and then use another 

approximation tool to realize the selection of the 

optimal control sequence, thus achieving the 

approximate optimal control of the whole system. In 

order to be able to solve the dynamic programming 

problem, different kinds of function approximation 

structures are proposed to directly or indirectly 

approximate the optimal performance index function 

and the optimal control. 

 

Werbos [60] first proposed two approximate dynamic 

programming structures. One is called Heuristic 

Dynamic Programming (HDP) and the other is called 

Dual Heuristic Programming (DHP). The HDP 

structure based on neural network is shown in Figure 

2.The approximate structure of the function uses 

neural network approximation. Next, Werbos gave 

two other forms of adaptive dynamic programming 

"execution dependencies", called Action Dependent 

Heuristic Dynamic Programming (ADHDP) and 

execution dependent Dependent Dual (Action 
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Dependent Dual). Heuristic Programming, ADDHP). 

These four structures are the basic structures in the 

adaptive dynamic programming method. 

Evaluation 

network

Evaluation 

network
Execution 

network

Model 

network
+

-

x(k)

J[x(k)]

J[x(k+1)]x(k+1)u(k) u[x(k),u(k)]

Figure 2. HDP structure diagram 

 

In HDP, the performance indicator function can be 

written as: 

( )( ) ( ) ( )  ( ), 1J x k U x k u x k J x k= + +                             

(3) 

𝑢[𝑥(𝑘)]  is the feedback control variable; the 

performance index functions 𝐽[𝑥(𝑘)]and 𝐽[𝑥(𝑘 + 1)] 

are the evaluation of the output of the neural network. 

If the weight of the evaluation network is ε, the right 

side of (3) can be 

                   

( ) ( ) ( )  ( ), , 1 ,d x k U x k u x k J x k = + +                    

(4) 

The left side of Equation (3) can be written as 

J[x(k), ω], Therefore, by evaluating the evaluation of 

the neural network weight ω , the following mean 

square error function is minimized. 

( ) ( ) 
2

* arg min , ,J x k d x k


  = −                       

(5) 

Thereby obtaining the optimal performance index 

function. According to the principle of optimality, the 

optimal control should satisfy the first-order 

differential necessary condition, that is 

 

( )

( )

( ) ( )

( )

( )

( )

( ) ( )

( )

( )

( )

( ) ( )

( )

* , * 1

, * 1 ,
                    =

1

J x k U x k u k J x k

u k u k u k

U x k u k J x k f x k u k

u k x k u k

   +          = +
  

  +           +
  + 

          (6) 

2.3 Adaptive Execution Dependent Heuristic 

Dynamic Programming (ADHDP) method 

 

The biggest difference between the HDP and ADHDP 

algorithms is that the evaluation network of ADHDP 

not only takes the system state as input, but also takes 

the control variable as input. The output of the 

evaluation network is often called the Q function, so 

ADHDP is also often called Q-learning. ADHDP 

merges the model network and the evaluation 

network into a new evaluation network, as shown in 

Figure 3. And Figure.4 shows the structure and 

schematic of ADHDP. 

 

Execution network
Evaluation 

network
Model network

Execution network
New evaluation network

x(k)

x(k)

u(k)

u(k)
Q(k)

x(k+1)

Figure 3. Construction of a new evaluation network 

in ADHDP 
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Figure 4. Structure and principle of ADHDP 

 

Evaluate network training by minimizing the 

following error function: 

( ) ( ) ( ) ( ) ( )
221 1

1
2 2

c c

k k

E k e k Q k Q k U k= = − − +   

                (7) 

In (7), 𝑄(𝑘) = 𝑄[𝑥(𝑘), 𝑢(𝑘), 𝑘, 𝑤𝑐], 𝑈(𝑘) is the utility 

function at time k; γ(0＜γ＜1) is the discount factor；

𝑤𝑐  is the weight of the evaluation network. 
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According to (7), for all k, when 𝐸𝑐(𝑘) = 0时, then 

further derivation:  

( ) ( ) ( )

( ) ( ) ( )

( )1

1

1 1

        1 1 2

        ...

        i k

i k

Q k U k Q k

U k Q k Q k

U i



 




− −

= +

= + + +

= + + + + +  

=

= 

 

(8) 

Suppose the input vector in the evaluation network: 

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2, ,  ... , , , ,  ... ,n mx k x k x k u k u k u k=   y

               (9) 

The calculation method of the hidden layer input 

𝑞𝑖(𝑘): 

 ( )

,

1

i j

T

cw= q y                                  (10) 

 In each operation, it is necessary to minimize 𝐸𝑐(𝑘), 

and use the gradient descent algorithm to update the 

weight of the evaluation network: 

( ) ( ) ( )1c c cw k w k w k+ = +                       (11) 

( ) ( )
( )
( )

( )
( )
( )

( )
( )

( )
( )

c c c

c c c

c c c

E k E k e k Q k
w k l k l k

w k e k Q k w k

      
 = − = −     

      

   

( ) ( )
( )
( )

            c c

c

Q k
l k e k

w k



= −   


                             

（12）                           

After the completion of the network training, the 

training of the execution network is performed. The 

training goal of the execution network: 

( ) ( ) ( )2 21 1
0

2 2
a aE k e k Q k= = =                   (13) 

Therefore, after the optimization function 𝑄(𝑘)  is 

obtained, the optimal control 𝑢∗(𝑘) is easily obtained. 

    ( )
( )

( ) ( )* argmin * ,
u k

u k Q x k u k=                      (14) 

The calculation method for the input ℎ𝑖(𝑘) from the 

input layer to the hidden layer in the execution 

network: 
( )

,

1

i j

T

aw= h x                                （15） 

The activation function used by the hidden layer of 

the execution network is a Sigmodial nonlinear 

function, and the output of the hidden layer:  

( )
( )( )
( )( )

1 exp

1 exp

i

i

i

h k
g k

h k

− −
=

+ −
                   （16） 

The calculation method of the output layer a of the 

execution network: 

 𝑣 = 𝑤𝑎𝑜,𝑖

(2)
× 𝑔𝑇                           (17) 

The activation function used by the output layer of 

the execution network is a Sigmodial nonlinear 

function, and the output of the output layer: 

 

( )
( )( )
( )( )

1 exp

1 exp

o

o

o

v k
u k

v k

− −
=

+ −
                (18) 

Minimize 𝐸𝑎(𝑘)  in the operation, and use the 

gradient descent algorithm to update the weight of 

the execution network. 

( ) ( ) ( )1a a aw k w k w k+ = +  

( ) ( )
( )
( )

( )
( )
( )

( )
( )

( )
( )

( ) ( )
( )
( )

            

a a a

a a a

a a a

a a

a

E k E k e k Q k
w k l k l k

w k e k Q k w k

Q k
l k e k

w k

      
 = − = −     

      


= −  



        (19) 

III. Implementation of PMSM Control Algorithm 

Based on Data Driven Nonlinear MIMO ADP 

 
3.1 Mathematical model of PMSM 

According to the ideal motor model assumption, the 

three-phase voltage equation of PMSM in the natural 

coordinate system is 

3 3 3

d

d
s s s

t
= +u Ri                              (20) 

The flux linkage equation: 

( )3 3 3 3s s s f s e = + ψ L i F                                 (21) 

3sψ  is the flux linkage of the three-phase winding; 

3su , R , 3si  are the phase voltage, resistance and 

current of the three-phase winding; 3sL  is the 

inductance of the three-phase winding; f  is a 

permanent magnet flux linkage; ( )3s eF  is the flux 

linkage of the three-phase winding. And it satisfies 

the following conditions 
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( ) ( )

( )
3 3 3 3 3

0 0 sin

, 0 0 , , , sin 2 / 3

0 0 sin 2 / 3

A A A e

s B s s B s B s e e

C C C e

i R u

i R u

i R u

 

   

  

        
        

= = = = = −        
         +         

i R ψ u F

3 3 3

1 cos 2 / 3 cos 4 / 3 1 0 0

cos 2 / 3 1 cos 2 / 3 0 1 0

cos 4 / 3 cos 2 / 3 1 0 0 1

s m lL L

 

 

 

   
   

= +
   
      

L  .  

Where， 3mL  is the stator mutual inductance； 3lL  is 

the stator leakage inductance. 

The mechanical motion equation of the motor:  

                      
d

d

m
e L mJ T T B

t


= − −                       (22) 

Where m  is the mechanical angular velocity of the 

motor； J  is the moment of inertia； B  is damping 

coefficient； eT  is the electromagnetic torque； LT  is 

the load torque. 

 

According to the principle of energy conversion, the 

electromagnetic torque eT  is equal to the partial 

derivative of the magnetic field energy storage to the 

mechanical angle m  displacement. Therefore,  

                         ( )3 3

1

2

T

e n s s

m

T p



= 


i ψ                  (23) 

np  is the pole pair of three-phase PMSM. 

 

3.2 FOC control model of PMSM 

Vector control refers to the idea that armature 

current and excitation current of DC motor are 

mutually perpendicular, uncoupled and 

independently controlled. Through d-q conversion in 

synchronous rotating coordinate system of three-

phase PMSM motor, the size and direction of stator 

current of motor are controlled in synchronous 

rotating coordinate system. The purpose of 

decoupling d axis and q axis components is achieved, 

and the decoupling control of magnetic field and 

torque is realized. The control performance of AC 

motor is similar to that of DC motor. 

 

Common methods of FOC are control and maximum 

torque to current ratio control. This paper uses the 

control method. As shown in Figure 5, FOC control 

mainly includes three parts: speed loop control, 

current loop control and two-level space vector 

modulation (SVPWM) algorithm. 
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Figure 5. Three-phase PMSM vector control system 

diagram 

 

3.3 Implementation of PMSM Control Algorithm 

Based on Data Driven Nonlinear MIMO ADP 

In order to verify the data-driven ADP algorithm, and 

in the FOC control system for PMSM, in order to 

compare the PMSM control with the ADHDP 

controller, the compensation controller is first added 

only for the speed loop PI control. A schematic 

diagram of a system for adding a compensation 

controller to a speed loop PI controller is shown in 

Figure 6. 

 

Define the utility function as  

               ( ) 2 2

, ,,k s k N k u s kU x u R N R u=  +            (24) 

 

where NR > 0， uR > 0，They are the coefficients that 

compensate the input and output of the controller.  
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Figure 6. Speed loop ADP compensation controller 

system schematic 
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Design approximate cost function parameter is 

( ) ( ) ( ) ( )
T

11 12 22= , ,
i i i i

W S S S 
 

. The basis function is 

( )
T

2 2

, , ,, = ,2 ,k s k k k s k s kx u N N u u     . Therefore, the 

approximate compensation control that can be 

obtained is  

,s k ku K N=                             (25)  

and K=
( )

( )
12

22

i

i

S

S
−  

The method for compensating only the speed loop PI 

controller is equivalent to a single-input single-output 

controller, and the PMSM has three PI controllers in 

the FOC control. If one compensation controller can 

be used to compensate three PI controllers 

simultaneously. Control, extended to multiple input 

multiple output (MIMO) controllers, not only can 

increase the application range of this method, but also 

make the control performance improvement more 

reliable. Figure 7 is a schematic diagram of the data-

driven ADP compensation controller algebraic loop, 

and Figure 8 is a schematic diagram of the data-driven 

ADP system with multiple inputs and multiple 

outputs. 
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Figure 7.  Data Driven ADP Compensation Controller 

Algebraic Ring Diagram 
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Figure 8. Schematic diagram of data driven ADP 

system with multi-inputs multi-outputs 

For the added part, the algorithm needs to be re-

derived. After expanding to a multi-input multi-

output controller, the state variable kx ： 

                            
T

, ,k r d qx N I I =             （26） 

The corresponding compensation control ,s ku ： 

                             
T

, ,s k d qu u u =              （27） 

Define the utility function as 

( ) 2 2 2 2 2

,,
d qk s k N r d d q q u d u qU x u R N R I R I R u R u=  +  +  + +         

（28） 

The cost function is defined as 

( ) ( ) ( ) T

, , ,
ˆ , , ,

i i

k s k k s k k s kQ x u x u S x u   =       （29） 

Where ( ) 5 5i
S  ¡ , ( )i

S  is a symmetric matrix ，

Therefore, 
( )i

W is defined as the expanded form of 

the parameter matrix 
( )i

S , and only the upper 

triangular portion is expanded. 

                    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

11 12 13 14 15 22 23 24

T

25 33 34 35 44 45 55

[ , , , , , , , ,

           , , , , , , ]

i i i i i i i i i

i i i i i i i

W S S S S S S S S

S S S S S S S

=
   

（30） 

IV. SIMULATION RESULTS AND ANALYSIS 

 

First analyze the data-driven ADP compensation 

controller results that only increase the speed loop. 

The utility function that defines the speed loop data 

driven ADP: 

( ) 2 2

, ,, 0.14k s k k s kU x u N u=  +                     （31） 

 

The simulation condition is set to：Speed refN = 1000 

rpm, Time is 0.4s, Motor initial load torque is LT = 0 

N·m, When 0.2s, the load torque is LT = 10 N·m. The 

simulation results are shown in the figure below. 

 

Figure 9 is the speed response curve of the PMSM, the 

dashed line represents the speed response curve of the 

ADHDP, and the solid line represents the data-driven 

speed response curve. The picture shows that the 

data-driven ADP control method can quickly 

converge to a preset speed. In addition, after 
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increasing the load for 0.2 seconds, the data-driven 

ADP compensation controller has a smaller overshoot 

than the ADHDP controller and can return to the 

preset speed more quickly. 

 

 
Figure 9. Speed response curve 

 

The speed loop compensation control curve and the 

compensation controller coefficient K curve are 

shown in the Figure.10. When the compensator finds 

a large error at the beginning, it immediately 

increases the compensation control. This method 

enables fast calculations and allows the input and 

coefficient 𝐾 to converge quickly. 

 
(a). Speed compensation control curve 

 
(b). Compensation controller coefficient K 

Figure 10. (a) Speed compensation control curve; (b) 

Compensation controller coefficient K 

 

Figure.11 shows the three-phase current curve and 

electromagnetic torque curve of the PMSM based on 

the data driven ADP method. There is no pulse 

overshoot after increasing the load at 0.2 seconds, so 

it can be explained that the data-driven ADP 

controller has strong robustness. At this point, the 

compensation controller has converged and can make 

correct compensation control for the system.  

 
(a) Three-phase current 𝐼𝑎𝑏𝑐 curve 

 
(b) Electromagnetic torque 𝑇𝑒 curve 

Figure 11. (a) Three-phase current 𝐼𝑎𝑏𝑐 curve; (b) 

Electromagnetic torque 𝑇𝑒 curve 

 

Figure 12 (a) is a d-axis current loop compensation 

control curve. Since the limit is not set for the 

compensation controller, the d-axis compensation 

controller can give a large control output when the 

PMSM speed is from 0 to 1000 rpm. When the PMSM 

reaches the set speed, the compensator quickly 

reduces the compensation control amount and 

fluctuates around 0. Figure 12 (b) is a q-axis current 

loop compensation control curve. The compensation 

control amount is very large in the corresponding 

initial stage because of the large variation of speed. 

After reaching the set speed, the compensation 

control amount decreases rapidly. 

 
（a）q-axis current loop compensation control 

 
(b) d-axis current loop compensation control 

Figure 12.（a）q-axis current loop compensation 

control; (b) d-axis current loop compensation control 
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After comparing the two compensation applications, 

the effectiveness of ADP compensation control based 

on data-driven least squares strategy iteration can be 

obtained. This kind of controller needs more state 

information from the system. It can find that the 

effect of multi-input and multi-output is better than 

that of single-input and single-output. It also reflects 

the core idea of data-driven control, and constructs a 

System-compliant control method in the agent by 

collecting and learning the relevant data of the system. 

 

V. DISCUSSION AND CONCLUSION 

 

A data-driven ADP control method based on 

traditional ADP control is proposed, which is 

especially suitable for control optimization of 

complex power systems. The feasibility of the method 

is verified by PMSM modeling and control. By 

comparing the simulation experiments, it can be 

concluded that the data-driven nonlinear multi-input 

and multi-output adaptive dynamic programming 

algorithm proposed in this paper has obvious 

advantages. Simulation experiments show that the 

larger the amount of data, the more effectively the 

controller can construct the system information and 

improve the ability of the system to meet the 

corresponding indicators. 

 

In addition, based on the adaptive dynamic 

programming of artificial neural network, through 

the development of reinforcement learning concept, 

the data-driven adaptive dynamic programming 

online compensation control method based on least 

squares strategy iteration is derived. The application 

of the intelligent compensation control method has 

important guiding significance for the intelligent 

transformation of the system. At the same time, it has 

further research significance for different controlled 

systems and promoting the development of AI 

autonomous control. 
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